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Background and Collaborators

Developed result of “The Conley-Zehnder indices of the rotating

Kepler problem” by Albers, Fish, Frauenfelder, van Koert, 2013,

which deals with planar rotating Kepler problem.

Based on my ph.D thesis.

Collaborator: Beomjun Sohn

Dongho Lee, SNU, RIM April 25, 2025 1/35



Contents

1. Rotating Kepler Problem

Three laws of Kepler, invariants, Moser regularization

2. Periodic Orbits of Rotating Kepler Problem

Classification of periodic orbits, description of moduli space

3. Conley-Zehnder Index of Kepler Orbits

Computation of CZ index, relation with symplectic homology

Dongho Lee, SNU, RIM April 25, 2025 2/35



Rotating Kepler Problem



Kepler Problem

The Kepler problem describes the motion of an object under the

gravitational force of a mass at the origin.

Hamiltonian : Kepler energy E : T ∗(R3 \ {0}) → R,

E(q, p) =
1

2
|p|2 − 1

|q|

The singularity at 0 will be regularized by Moser regularization.

Planar problem : domain is T ∗R2 \ {0}.
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Three Laws of Kepler

In 17C, Kepler discovered these three laws through observation.

1. The solutions are conic sections with one focus at the origin.

If E < 0, every orbit is an ellipse.

2. The areal velocity dArea/dt = r2θ̇/2 is constant.

3. The period τ of solution satisfies τ2 = −π2/2E3.

τ only depends on the Kepler energy.
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Two Invariants

1. Angular momentum L = q × p.

Direction of L = Normal to the plane which the orbit contained in.

2. Laplace-Runge-Lenz vector A = p× L− q
|q|

Direction of A = Direction of the major axis

Length of A = Eccentricity ε

Some relations :

1. {E,Li} = {E,Aj} = 0 for any i, j.

2. {|L|, Li} = 0 for any i.

3. {Li, Aj} = εijkAk. In particular, {Li, Ai} = 0

4. ε2 = |A|2 = 2E|L|2 + 1.
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Two Invariants

On L · q, the Kepler orbit is given in the polar coordinate by

r =
|L|2

1 + |A| cos(θ − g)
(g is determined by the direction of A).

In particular, E, L and A determine the Kepler orbit.

Dongho Lee, SNU, RIM Rotating Kepler Problem April 25, 2025 6/35



Moser Regularization

For E0 < 0, we can embed the Hamiltonian flow on the level set

E−1(E0) into the unit geodesic flow on T ∗S3.

⇒ Compactification of the energy level set by ST ∗S3 ≃ S3 × S2.

The collision orbits are added.

This is a special case of ellipse with ε = |A| = 1, L = 0.
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Rotating Kepler Problem

Kepler problem : Every orbit is periodic ⇒ Too degenerate.

(Real motivation: a limit of the restricted three-body problem)

Rotating Kepler problem is defined by Hamiltonian

H = E + L3 =
1

2
|p|2 − 1

|q|
+ (q1p2 − q2p1).

H : total energy or Jacobi energy (usually, H = c)

E : Kepler energy.

Note. Moser regularization is still valid, gives a Finsler geodesic flow on

T ∗S3, and the energy hypersurface is ST ∗S3 ≃ S3 × S2.
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Periodic Orbits of Rotating

Kepler Problem



Periodic Orbits

There are three types of periodic orbits.

1. Two planar circular orbits, nondegenerate for generic c.

2. Two vertical collision orbits, nondegenerate for generic c.

3. Morse-Bott family of degenerate orbits with specific Kepler energy.

Idea. FlL3 is a rotation along q3- and p3-axis, and FlH = FlE ◦ FlL3 .
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Nondegenerate Periodic Orbits

Figure 1: Planar circular orbits and vertical collision orbits

These are periodic after composing with FlL3 .
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Nondegenerate Periodic Orbits

Circular condition: ε2 = 2EL2
3 + 1 = 2E(c− E)2 + 1 = 0.

For fixed c < −3/2, there are 3 planar circular orbits with different E.

1. Retrograde orbit γ+: L3 > 0, smaller E and smaller radius.

2. Direct orbit γ−: L3 < 0, larger E and larger radius.

3. The rest one, outer direct orbit, lies on the unbounded component,

and not of our interest (discarded during regularization).

Vertical collision orbits γc± : L = 0, A3 = ∓1, c = E.

They do not appear in the planar problem.

At generic c, these orbits and their covers are isolated, so nondegenerate.
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Diagram of the Nondegenerate Orbits

Figure 2: Graph of 2E(c− E)2 + 1 = 0 and the orbits
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Morse-Bott Family

For other cases, the periods of E-orbit and L3-orbit must be the same.

τ = 2π/(−2E)3/2 ⇒ there exists some k, l ∈ Z such that

kτ =
2kπ

(−2E)3/2
= 2lπ ⇒ Ek,l = −1

2

(
k

l

)2/3

For given c, only orbits with Kepler energy Ek,l can be periodic.

Such orbits appear with Morse-Bott S3-family Σk,l. (will be explained)

Note. We have S1-families in the planar problem.
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Morse-Bott Family

Figure 3: Illustration of periodic orbits on a plane and space 1

1Chankyu Joung drew these nice pictures.
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Moduli Space

Recall. E,L and A characterizes the Kepler orbit.

Denote x =
√
−2EL−A, y =

√
−2EL+A.

⇒ |x|2 = |y|2 = −2E|L|2 + |A|2 = 1.

The moduli space of the Kepler orbits with Kepler energy E is

ME =
{
(x, y) : |x|2 = |y|2 = 1

}
≃ S2 × S2.

(Space of unit geodesics of S3) = ST ∗S3/S1 ≃ S2 × S2.

Note. In the planar problem, the moduli space is RP3/S1 ≃ S2.
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Properties of ME

L3 = (x+ y)/
√
−2E serves as a Morse function with 4 critical points.

1. The direct orbit γ− = (−1,−1) has index 0.

2. Vertical collision orbits γc± = (±1,∓1) have index 2.

3. The retrograde orbit γ+ = (1, 1) has index 4.

Every regular level set of L3 is S3.

⇒ Morse-Bott family in the rotating Kepler problem.

(For fixed c, if E = Ek,l, then L3 = c− Ek,l is specified.)
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Properties of ME

A3 also serves as a Morse function.

Figure 4: Toric-style diagram of ME .
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Periodic Orbits in H−1(c)

For generic energy level c, the energy hypersurface H−1(c) contains 4

nondegenerate orbits and (infinitely many) Morse-Bott S3-families.
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Conley-Zehnder Indices of Kepler

Orbits



Conley-Zehnder Index of Planar Circular Orbits

Theorem
Let γ± be the retrograde and direct orbits of Kepler energy E where

E ̸= Ek,l for any k, l. Then γ± and their multiple covers are

non-degenerate. The Conley-Zehnder index of N -th iterate of γ± is

µCZ(γ
N
± ) = 2 + 4max

{
n ∈ Z>0 : n < N

(−2E)3/2

(−2E)3/2 ± 1

}
= 2 + 4

⌊
N

(−2E)3/2

(−2E)3/2 ± 1

⌋

The index is exactly the twice compare to the planar problem, which was

computed in [AFFvK13].
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Conley-Zehnder Index of Planar Circular Orbits

Figure 5: Graph of µ± = (−2E)3/2

(−2E)3/2±1
.

The index of γN
+ decreases by 4, while γN

− increases by 4, whenever µ±

touches k/N ⇔ E = EN−k,k or E = EN+k,k. (bifurcation!)
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Conley-Zehnder Index of Vertical Collision Orbits

Theorem
Let γc± be the vertical collision orbits of Kepler energy E where

E ̸= Ek,l for any k, l. Then γc± and their multiple covers are

non-degenerate. The Conley-Zehnder index of N -th iteration of γc± is

µCZ(γ
N
c±) = 4N.

In particular, change of the energy does not change the index.
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Summary of the Result

Orbits Initial Index Index Change

Retrograde γN
+

4N − 2

if E < EN−1,1

−4 at E = EN−k,k

for k = 1, . . . , N − 1

= 2 if E > E1,N−1.

Direct γN
−

4N + 2

if E < EN+1,1

+4 at E = EN+k,k

for k = 1, 2, . . .

Vertical Collisions γN
c± 4N No change

Table 1: Conley-Zehnder indices of nondegenerate orbits

First bifurcation of γN
± is at c = EN∓1,1 ± 1/

√
−2EN∓1,1.
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Interpretation by Symplectic Homology

SH+,S1

∗ (T ∗S3) ≃


Z2 ∗ = 2,

Z2
2 ∗ = 2k ≥ 4,

0 otherwise.

For fixed N , there exists c ≪ −3/2 such that H−1(c) consists of

1. k(≤ N)-th covers of γ± of index 4k ∓ 2. (No bifucation)

2. Higher covers have index > 4N + 2.

Up to degree 4N + 2, we have

1. One generator at degree 2. (γ+.)

2. Two generators at degree 6, 10, 14, · · · , 4N + 2. (γk+1
+ and γk

−.)

3. Two generators at degree 4, 8, 12, · · · , 4N . (γk
c+ and γk

c− .)

This describes SH+,S1

∗ (T ∗S3) up to degree 4N + 2 completely.
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Morse-Bott Spectral Sequence

Case : Reeb orbits with the same period τ form a submanifold Σ

which satisfies Morse-Bott condition : det(dF lXH
τ |νΣ − Id|νΣ) ̸= 0.

Theorem

There exists a spectral sequence converging to SH+,S1

(W ) whose

E1-page is given by

E1
pq(SH

S1,+) =

{ ⊕
Σ∈C(p) H

S1

p+q−shift(Σ)(Σ) p > 0

0 p ≤ 0

where shift(Σ) = µRS(Σ)− 1
2 dimΣ/S1.

Dongho Lee, SNU, RIM Conley-Zehnder Indices of Kepler Orbits April 25, 2025 24/35



Morse-Bott Property

We compute the linearized return map by using action-angle coordinates.

In the planar problem, [AFFvK13] used Delaunay coordinate given by

(pl, pg) = (1/
√
−2E,L3), which degenerate at planar circular orbits.

In the spatial problem, we should use two coordinates:

1. Delaunay coordinate : (pl, pg, pθ) = (1/
√
−2E, |L|, L3).

But this coordinate system degenerates at every planar orbit.

2. LRL coordinate : (pl, pη, pθ) = (1/
√
−2E,A3, L3).

This degenerates at every circular orbit, but covers planar orbits.
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Conley-Zehnder Index of Degenerate Orbits

As we increase the Kepler energy level E from Ek,l − ε to Ek,l + ε,

1. Retrograde: µCZ(γ
k+l
+ ) decreases from 4k + 2 to 4k − 2.

2. Direct: µCZ(γ
k−l
− ) increases from 4k − 2 to 4k + 2.

3. Morse-Bott family: At E = Ek,l, S
3-family Σk,l emerges.

Theorem

Index of S3-family Σk,l with Kepler energy Ek,l is

µCZ(Σk,l) = shift(Σ) + dimS3/2

= (4k − 2) + 3/2 = 4k − 1/2.
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Conley-Zehnder Index of Degenerate Orbits

Figure 6: Bifurcation diagram of γ3
− at E = E4,1
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Morse-Bott Spectral Sequence

(Local) Morse-Bott spectral sequence of SHS1,+

Left: H = c−, triple cover of direct orbit with index 14.

Right: H = c+, triple cover of direct orbit with index 18,

⇒ S3-family must have shift 14, so µCZ(Σ4,1) = 14 + 3/2 = 15.5.
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Questions / Comments / Suggestions



Appendix 1. Hill’s Region

H(q, p) =
1

2

(
(p1 − q2)

2 + (p2 + q1)
2
)

nonnegative

+

(
− 1

|q|
− q21 + q22

2

)
effective potential U(q)

H = c ⇒ U(q) ≤ c, and {q : U(q) ≤ c} is called a Hill’s region.

If c < −3/2, the Hill’s region has a bounded component (red ball).
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Appendix 2. Moser Regularization

Fix E = E0. Consider the Hamiltonian on T ∗R3

K̃(q, p) =
1

2
(|q| (E(q, p)− E0) + 1)

2
=

1

2

(
1

2
(|p|2 − 2E0)|q|

)2

.

This is the Hamiltonian of geodesic vector field on T ∗S3
r under the

stereographic projection

Φr : T ∗S3
r → T ∗R3

(x, y) 7→
(

rx⃗

r − x0
,
r − x0

r
y⃗ +

y0
r
x⃗

)
where r =

√
−2E0, composed with a switch map (q, p) 7→ (−p, q).
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Appendix 2. Moser Regularization

On T ∗
r S

3, we have

Kr =
r4

2
|y|2

The level set E−1(E0) can be embedded into K−1(1/2)

⇒ Kepler Hamiltonian vector field and geodesic vector field are parallel.

XK |E−1(E0)(p, q) = |q|XE |E−1(E0)(−q, p).

We regard Kepler problem as a sub-system of the geodesic flow on T ∗S3.
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Appendix 3. Restricted Circular Three-body Problem

Restricted circular three-body problem describes a motion of a

massless body under the gravitational force of two objects with mass

ratio µ, and assume the motions of two bodies are circular.

Corresponding Hamiltonian is time-dependent.

Et(q, p) =
1

2
|p|2 − µ

|q −m(t)|
− 1− µ

|q − e(t)|
,

e(t) = −µ(cos t,− sin t, 0), m(t) = (1− µ)(cos t,− sin t, 0)

In rotating frame, the Hamiltonian is autonomous (time-independent).

H =
1

2
|p|2 − µ

|q − (1− µ)|
− 1− µ

|q − µ|
+ (q1p2 − q2p1)

Rotating Kepler problem is a limit case, µ = 0.
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Appendix 3. Restricted Circular Three-body Problem

Figure 7: Restricted circular three-body problem2

2H. Alrebdi, F.Dubeibe, K,Papadakis, E.Zotos “Equilibrium dynamics of a circular

restricted three-body problem with Kerr-like primaries”
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Appendix 4. How to compute the CZ index?

1. For nondegenerate orbits, find a parametrization and period.

2. Find symplectic frame which can be extended to the capping disk.

For planar circular orbits, an appropriate global frame in T ∗R2 was

introduced in [AFFvK13]. We extended the frame to T ∗R3.

For vertical collision orbits, we used other frame.

3. Compute the linearized flow and crossing forms.

For vertical collision orbits, we splitted the flow into E-part and

L3-part. For the singularity of E-part, we used a limit argument.

4. Use Morse-Bott spectral sequence to compute the index of

degenerate orbits.
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Appendix 5. Result in the Planar Problem

Theorem (AFFvK13)
Let γ± be the retrograde and direct orbits of Kepler energy E where

E ̸= Ek,l for any k, l. Then γ± and their multiple covers are

non-degenerate. The Conley-Zehnder index of N -th iterate of γ± is

µCZ(γ
N
± ) = 1 + 2max

{
n ∈ Z>0 : n < N

(−2E)3/2

(−2E)3/2 ± 1

}
= 1 + 2

⌊
N

(−2E)3/2

(−2E)3/2 ± 1

⌋

This shows the dynamical convexity of the planar rotating Kepler

problem. (The energy hypersurface is RP3, and the retrograde orbit is

non-contractible but its double cover is.)
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Thank you for your attention!
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